

菲曼产品手册

P20E 高精度高可靠性组合导航模组

修订记录

版本号	修订记录	日期
V2. 0		2021年11月
V2. 1		2023年01月
V2. 2	补充完善 AT 指令和自定义 NMEA 语句协议	2023年02月
V2. 3	增加产品型号说明、增加部分技术参数	2023年03月
V2. 4	增加标定指令、增加 GPCAL 协议说明	2023年06月

目录

— .	产品介绍	4
	1. 产品概述	4
	2. 技术特性	4
	3. 应用场景	4
=.	技术参数	. 5
Ξ.	硬件设计	6
	1. 硬件管脚定义	6
	2. 模块封装(后视图)	8
	3. 参考设计电路	9
四.	指令及输出协议	10
	1. AT 配置命令	10
	2. 自定义参数配置	12
	3. FMI 数据协议	13
	4. 差分数据协议	16
五.	常见问题解答	16
	1. AT+COLD_RESET 执行异常	16
	2. 产品型号说明	16
	3. 固件版本号说明	16

一. 产品介绍

1. 产品概述

P20E 是专注于高精度, 高可靠性的厘米级组合导航定位模组, 同时具备高度集成, 尺寸小, I/O 兼容性好, 功耗低等特点。

集成了支持 BDS、GPS、GALILEO、GLONASS、QZSS 的 GNSS 接收机及 IMU(仅限 P20E-INS),采用了多频段 RTK 及组合导航技术,可实现厘米级的精度。

可同时接收解算 65 颗以上多频全球导航定位卫星信号,可在有严重卫星信号遮 挡的情况下依然提供高可靠性的定位数据,提供无中断的导航定位输出,为城市峡谷等困难场景提供了可靠的导航定位解决方案。

采用符合市场的 I/O 兼容性好的 54-PIN LGA 封装方式,尺寸仅为 22mm*17mm*2.8mm,以兼容过往硬件设计,减小设计风险。同时提供了丰富的开发文档及库函数资源,可使开发工作更为简单、快捷。

2. 技术特性

- 支持 BDS、GPS、GALILEO、GLONASS、QZSS 多星解算
- 兼容主流模组 I/0 与尺寸
- RTK 快速初始化, 典型优于 5s
- path-2-path 定位技术
- 支持 NTRIP RTCM3. X 地基增强数据

3. 应用场景

- · 高精度 GNSS 接收机、手持终端
- 机场、港口、码头、仓库
- 无人系统: 无人机、无人车、无人船
- 精准农业、机械控制

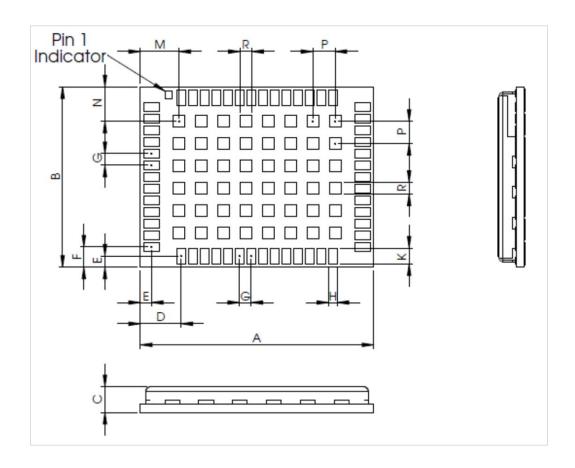
二. 技术参数

GNSS 性能		
跟踪频点	GPS / QZSS: L1, L5 BEIDOU: B1I, B2a GALILEO: E1, E5a GLONASS: G1	
水平精度	≤ 8mm + 1ppm	
速度精度	≤ 5 cm/s	
启动时间	冷启动 ≤27s 热启动 2s	
固定解收敛时间	≤ 10s(开阔天空下短基 线或 VRS)	
path-2-path 精度	亚米级	
天线	单天线	
捕获灵敏度	-148 dBm	
跟踪灵敏度	-165 dBm	
跟踪通道数	135	
载波相位观测精度	< 0.01 cycle	
导航输出频率	Up to 10Hz	
应用极限	速度 515m/s 高度 18km	
电源及工作环境		
工作电压	3. 3v	
天线电压	3. 3v	
PPS	1.8V(上升沿)	
功耗	160mA×3.3V	
工作环境	-40℃ to 85℃	
存放温度	-40℃ to 90℃	
湿度	95% 非凝露	

IMU 性能(仅限 P20E-INS)			
陀螺仪	量程 ± 1000 deg/s 零偏稳定性 ± 4.5 deg/h 角度随机游走 0.17 deg/√h		
加速度计	量程 ± 16 g 零偏稳定性 ± 0.3 mg 速度随机游走 0.04 m/s/√h		
横滚、俯仰精度			
航向精度	≤ 0.2° (1 σ)		
惯性推估精度	≤ 1% * D (1σ、车载)		
数据采样率	100Hz		
接口	接口		
硬件接口	2 UART 1 PPS		
产品规格			
尺寸	22mm * 17mm * 2.8mm		
封装	LGA		
针脚	54-pin		

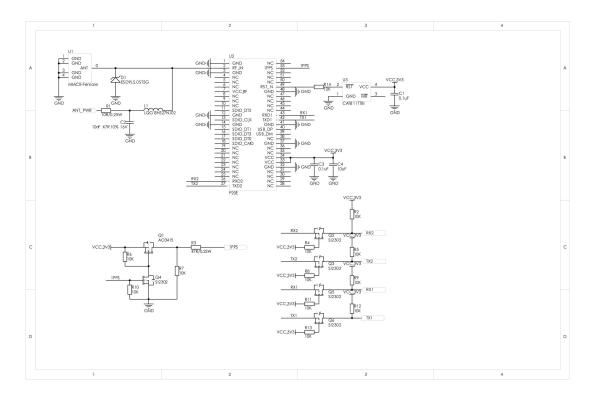
三. 硬件设计

1. 硬件管脚定义

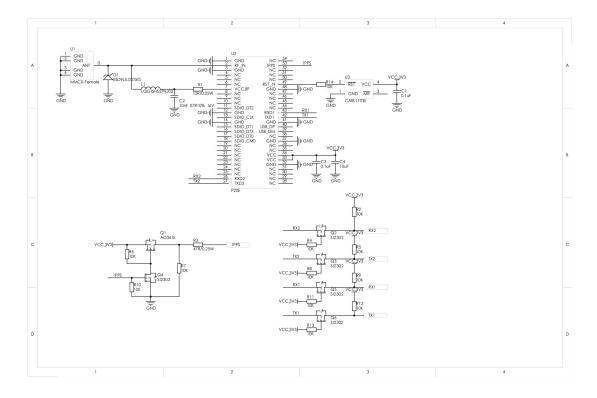

1	GND	地
2	RF_IN	天线端口
3	GND	地
4	NC	悬空
5	NC	悬空
6	NC	悬空
7	VCC_RF	天线电源, 3.3V 输出
8	NC	悬空
9	NC	悬空
10	NC	悬空
11	SDIO_D2	SDIO 数据线, 1.8V 逻辑电平
12	GND	地
13	SDIO_CLK	SDIO 时钟线, 1.8V 逻辑电平
14	GND	地
15	SDIO_D1	SDIO 数据线, 1.8V 逻辑电平
16	SDIO_D3	SDIO 数据线, 1.8V 逻辑电平
17	SDIO_DO	SDIO 数据线, 1.8V 逻辑电平
18	SDIO_CMD	SDIO 指令线, 1.8V 逻辑电平
19	NC	悬空
20	NC	悬空
21	NC	悬空
22	NC	悬空
23	NC	悬空
24	NC	悬空
25	NC	悬空
26	RXD2	串口 2 接收端口
27	TXD2	串口2发送端口
28	NC	悬空
29	NC	悬空
30	NC	悬空
31	NC	悬空
32	GND	地
33	VCC	3.3V 电源输入
34	VCC	3.3V 电源输入
35	NC	悬空
36	NC	悬空

37	GND	地
38	NC	悬空
39	USB_DM	USB 差分对负
40	USB_DP	USB 差分对正
41	GND	地
42	TXD1	串口1发送
43	RXD1	串口1接收
44	NC	悬空
45	NC	悬空
46	NC	悬空
47	NC	悬空
48	GND	地
49	RST_N	复位管脚
50	NC	悬空
51	NC	悬空
52	NC	悬空
53	1PPS	1PPS 输出, 1.8V 逻辑电平
54	NC	悬空

2. 模块封装(后视图)



Symbol	Min.(mm)	Typ.(mm)	Max.(mm)
А	21.80	22.00	22.35
В	16.80	17.00	17.20
С	2.70	2.80	2.90
D	3.65	3.85	4.05
E	0.85	1.05	1.25
F	1.70	1.90	2.10
G	1.05	1.10	1.15
Н	0.70	0.80	0.96
К	1.20	1.50	1.80
М	3.45	3.65	3.85
N	3.05	3.25	3.45
Р	2.05	2.10	2.15
R	0.88	1.10	1.32



3. 参考设计电路

天线外部供电

天线内部供电

四. 指令及输出协议

1. AT 配置命令

指令代码	功能说明
AT+WARM_RESET	热启动,复位 RTK 算法引擎
AT+COLD_RESET	冷启动,复位模组系统,等效于断电重启
AT+READ_PARA	读取当前配置信息,包含固件版本号、参数配置、Device ID 等重要信息
AT+VERSION	读取固件版本号
AT+PORT_NAME 或 AT+THIS_PORT	读取当前串口号,UART1 或者 UART2
AT+BAUDRATE=UART1, 115200 或 AT+BAUD_RATE=UART1, 115200	设置串口的通信波特率,支持常见通信波特率,最高到 921600,缺省为 115200
AT+NAVI_RATE=5	设置 RTK 引擎解算频率,单位 hz,支持 1、5、10,缺省 5hz。该频率是 GGA 等 NMEA 语句输出频率的上限。例如 NAVI_RATE 设置为 5hz,则GPGGA 输出频率最高也只能到 5hz
AT+SAVE_ALL	保存当前配置。许多指令需要保存后重启才能生效。例如 BAUD_RATE 和 NAVI_RATE
AT+GPGGA=UART1, 1	配置 UART1 的 GGA 输出频率为 1hz。0 代表不输出,输出频率支持小数频率如 0.1hz,最高支持 10hz
AT+GPRMC=UART1, 1	配置 UART1 的 RMC 输出频率为 1hz。同上
AT+GPSAT=UART1, 1	配置 UART1 的 GSA、GSV 输出频率为 1hz。同上
AT+GPGST=UART1, 1	配置 UART1 的 GST 输出频率为 1hz。同上
AT+GPZDA=UART1, 1	配置 UART1 的 ZDA 输出频率为 1hz。同上
AT+GPVTG=UART1, 1	配置 UART1 的 VTG 输出频率为 1hz。同上
AT+GELOC=UART1, 1	设置 UART1 的 GELOC 输出频率为 1hz。同上
AT+GPFMI=UART1, 1	配置 UART1 的 FMI 输出频率为 1hz。同上。自定义语句格式见 3. FMI 数据协议
AT+GPREF=UART1, 1	设置 UART1 的 REF 输出频率为 1hz。同上。自定义语句格式见 3. FMI 数据协议
AT+GPLOG=UART1, 1	设置 UART1 的 GPLOG 输出频率为 1hz。同上。自定义语句格式见 3. FMI数据协议
AT+GPIMU=UART1,1	配置 UART1 的 IMU 输出频率为 1hz。最高可以支持 100hz。自定义语句格式见 3. FMI 数据协议(仅限 P20E-INS)
AT+GPATT=UART1, 1	配置 UART1 的 ATT 输出频率为 1hz。最高可以支持 100hz。自定义语句格式见 3. FMI 数据协议(仅限 P20E-INS)

指令代码	功能说明
AT+RTCM3=UART1,1 或 AT+RTCM=UART1,1	基站模式下设置输出 RTCM3 (MSM4 和 1005), 输出频率为 1hz
AT+OBS=UART1, 1	设置输出 OBS 观测值(模组原始 RTCM3,包含 MSM7、星历和自定义信息,输出频率同 NAVI_RATE),数据量比较大,一般只用于研发调试
AT+NMEA_HEAD=0	设置 GGA 和 RMC 语句的 NMEA 消息头,0 为 GNGGA/GNRMC,1 为 GPGGA/GPRMC。缺省为 0。
AT+FMI_EXT=1	设置 GPFMI 消息扩展,0 为关闭,1 为打开。扩展的字段定义见 3. FMI 数据协议 <e1>~<e10></e10></e1>
AT+GELOC_SN=ABC	设置 GELOC 语句中的 SN 字符串
AT+UART_OFF=UART1 或 AT+UARTOFF=UART1s	批量关闭串口所有输出信息
AT+RTK_DIFF=X	设置差分龄期阈值,单位(分),超限后模组将退出 RTK 状态(缺省值0为30min)
AT+MFS=6	*设置固定解算法参数,MFS 阈值,整数,缺省为 6,最大设置 31
AT+MDS=8	*设置 AR 算法参数, MDS 阈值,整数,缺省为 8,最大设置 31
AT+DELTA=1	*设置内部 DELTA 参数,单位 10s,最大设置为 15,缺省为 0
AT+MINI_CNO=35	*设置算法内部载噪比阈值,整数,单位为dB,缺省为35,最大设置为63
AT+VEL_MODE=1	*设置算法内部速度计算模式: 0-基带提供速度, 1-多普勒计算速度, 缺省为 0
AT+VEL_RMS=1.0	*设置速度 RMS 阈值,分辨率为 0.05,缺省值为 1.0
AT+WORK_MODE=13	设置惯导的工作模式(13: 车载,8: 行人)(仅限 P20E-INS)
AT+IMU_ANGLE= α , β , γ	设置 P20 安装角,详情见模组安装帮助手册(仅限 P20E-INS)
AT+DR_TIME=180	设置惯导推估时间,单位(秒)(仅限 P20E-INS)
AT+LEVER_ARM= X, Y, Z	基于模组的 IMU 坐标系设置臂杆向量,单位(米)(仅限 P20E-INS)
AT+LEVER_ARM2= X, Y, Z	基于载体坐标系进行臂杆设置,单位(米),详情见模组安装帮助手册(仅限 P20E-INS)
AT+ALIGN_VEL=3	设置惯导的最小启动速度,单位(米/秒)(仅限 P20E-INS)
AT+PVE_MODE=4	设置惯导 PVE 模式,缺省值为 0,机器人模式为 4(仅限 P20E-INS)
AT+INSTALL_CAL=1	开启触发标定过程,车载模式进行标定时开启。自定义语句格式见 3.FMI 数据协议(仅限 P20E-INS)
AT+AUTO_BASE=ENABLE	基站模式下自动估算基站坐标。ENABLE/DISABLE

指令代码	功能说明
AT+BASE_LLH=LAT, LON, HGT	基站模式下手动设置基站坐标,纬度(单位°),经度(单位°),椭球高(单位 m,不是海拔高)。如果输入为0,0,0,等效于设置 AT+AUTO_BASE=ENABLE
AT+ACTIVATE_KEY=KEY	激活模组 RTK 或者组合导航功能
AT+PRODUCER=0	设置生产厂商标识,0 代表 FMI
AT+UPDATE_MODE	进入固件升级模式
AT+UPDATE_MODE_H=460800	进入指定波特率 460800 的固件升级模式
AT+CORS_TYPE=0	设置基站对于 B2a 信号的解码匹配方式。默认 0: p20E 自身基站信号 , 1: 千寻基站, 2: 六分基站, 3: 移动基站。截止到 2022 年,RTCM3.3 最新增补已规范了 B2a 的编解码标准, 无需设置。
AT+SHUT_DOWN	关闭系统,建议系统掉电前发送此指令

所有 AT 指令均以回车换行(\r\n, ASCII 码为 0x0D 0x0A)结尾 灰显的指令是已失效或者不再维护、不建议使用的指令。

P20E 支持 2 路 UART 串口, 每路串口可独立配置 NMEA 语句输出。上述 AT 指令均以 UART1 示例,也可以换成 UART2,例如 AT+GPGGA=UART2,1,设置 UART2 的 GGA 输出频率为 1hz。如果不指定 UART 号,则默认设置当前连接的 UART 串口,例如当前连接的是 UART1,则 AT+GPGGA=1 设置 UART1 的 GGA 输出频率为 1hz。

部分指令是基于最新的固件版本新增的,历史版本可能不支持。

功能说明中标星号(*)的指令会影响算法效果,建议修改前与菲曼研发人员进行确认。

2. 自定义参数配置

模式	命令集
车载模式	AT+WORK_MODE=13 AT+DR_TIME=300 AT+ALIGN_VEL=3 AT+VEL_MODE=1
机器人模式(无人 机、行人)	AT+WORK_MODE=8 AT+DR_TIME=10 AT+ALIGN_VEL=0.5 AT+PVE_MODE=4 AT+VEL_MODE=1
基站模式	AT+UARTOFF=UART1(纯基站模式可以关掉所有无关 NMEA 消息) AT+RTCM=UART1, 1 AT+BASE_LLH=LAT, LON, HGT (与 AT+AUTO_BASE=ENABLE 设置一个即可) AT+AUTO_BASE=ENABLE

命令设置完成请发送: AT+SAVE_ALL 进行保存 AT+WARM RESET 重启并生效

说明:模式中车载模式、机器人模式(无人机、行人)仅限 P20E-INS 车载模式需进行标定,可参考文档: P20E-INS 车载模式标定说明

3. FMI 数据协议

(1) GPFMI

\$GPFMI, <1>, <2>, <3>, <4>, <5>, <6>, <7>, <8>, <9>, <10>, <11>, <12>, <13>, <14>, <15>, <16>, <17>, <18>, <19>, <20>, <21>, <22>, <23>[, <E1>^<E10>]*<24><CR><LF>

- <1> UTC 时间,格式为 hhmmss.ss。ss
- <2> Week number,整周数
- <3> Time of week, 周内秒, 格式为(ss.mmm)
- 〈4〉纬度,单位(度)。正数为北纬,负数为南纬
- 〈5〉经度,单位(度)。正数为东经,负数为西经
- <6> 高程,单位(米)
- 〈7〉纬度标准差,单位(米)
- 〈8〉 经度标准差,单位(米)
- 〈9〉高程标准差,单位(米)
- 〈10〉东方向上的速度,单位(米/秒)
- <11> 北方向上的速度,单位(米/秒)
- <12> 天顶方向的速度,单位(米/秒)
- 〈13〉水平速度标准差,单位(米/秒)
- <14> 航向角,单位(度)
- <15> 俯仰角,单位(度)
- <16> 横滚角,单位(度)
- 〈17〉 航向角标准差,单位(度)
- 〈18〉俯仰角标准差,单位(度)
- 〈19〉横滚角标准差,单位(度)
- 〈20〉 基线距离, 单位米
- <21> 天线可见卫星数量
- <22> 载波整周固定的观测量个数,仅对固定解有意义
- 〈23〉定位质量指示,0=无效解,1=单点解,2=差分解,4=固定解,5=浮点解,6=惯导解

如果设置 FMI 语句扩展,会追加 10 个扩展字段

- 〈E1〉固定解参考 Ratio
- <E2> 固定解 AR 双差模糊度个数
- 〈E3〉 载噪比均值
- 〈E4〉载波非整数的观测量个数
- 〈E5〉 delta 观测量个数
- 〈E6〉惯导状态,内容为16进制表示的32位无符号整数,整数中每一位代表一个状态,各个状态之间可以叠加(初始化完成状态:08600002).每一位的具体意义如下:

0X00000002: 惯导程序已经开始运行.

0X00001000: 惯导结果无效

0X00400000: 惯导滤波器收敛完成

0X00200000: 安装参数 1 估计或加载完成 0X08000000: 安装参数 2 估计或加载完成

- 〈E7〉 预留
- 〈E8〉 预留
- 〈E9〉 预留
- <E10>预留
- 〈24〉异或校验和

语句示例 (带扩展字段)

\$GPFMI, 092900. 20, 2248, 466158. 200, 42. 06414612, 106. 22805621, 154. 305, 0. 0077, 0. 0068, 0. 0166, -0. 006, 0. 005, 0. 033, 0. 012, 0. 00, 0. 00, 0. 00, -1. 0000, -1. 0000, -

1.0000, 185.578, 38, 40, 4, 1.74, 19, 43, ,, 08000002, ,, , *4C

(2) GPIMU

\$GPIMU, <1>, <2>, <3>, <4>, <5>, <6>, <7>, <8>*<9><CR><LF>

- <1> UTC 时间,格式为 hhmmss.ss
- <2> x 轴加速度 (g)
- <3> y 轴加速度(g)
- <4> z 轴加速度 (g)
- <5> 陀螺 x 轴方向(°/s)
- <6> 陀螺 y 轴方向(°/s)
- <7> 陀螺 z 轴方向(°/s)
- <8> 传感器温度(°C)
- <9> 异或校验和

语句示例:

\$GPIMU, 062233. 00, 0. 009, -0. 005, -1. 017, -0. 580, 0. 214, 0. 092, 28. 118*75

(3) GPATT

\$GPATT, <1>, <2>, <3>, <4>*<5><CR><LF>

- <1> UTC 时间,格式为 hhmmss.ss
- <2> 横滚角(°)
- <3> 俯仰角(°)
- <4> 航向角(°)
- 〈5〉 异或校验和

语句示例:

\$GPATT, 062157. 00, 0. 00, 0. 00, 999. 99*48

(4) GPREF

\$GPREF, <1>, <2>, <3>, <4>, <5>, <6>, <7>, <8>*<9><CR><LF>

- <1> UTC 时间,格式为 hhmmss.ss
- 〈2〉参考站可用性,0代表正常,1代表异常
- <3> 参考站 ECEF x 坐标 (m)
- <4> 参考站 ECEF y 坐标 (m)
- <5> 参考站 ECEF z 坐标 (m)
- 〈6〉参考站状态,0代表正常,非0代表异常
- 〈7〉参考站类型
- <8> 参考站 ID
- <9> 异或校验和

语句示例:

\$GPREF, 062025. 00, 0, -2120469. 283, 5384856. 998, 3083401. 548, 0, 4, 1492*5C

(5) GPLOG

\$GPLOG, <1>, <2>, <3>, <4>, <5>*<6><CR><LF>

- <1> UTC 时间,格式为 hhmmss.ss
- 〈2〉模组支持的频点信息,P20E 支持 5 星 9 频,按照 GRECJ 顺序排布 ,内部逗号分隔,外部小括号分隔
- <3>每个频点用于浮点解的观测量个数 , 内部逗号分隔, 外部小括号分隔
- <4>每个频点模糊度固定的观测量个数,内部逗号分隔,外部小括号分隔
- <5>每个频点的载噪比均值,内部逗号分隔,外部小括号分隔
- 〈6〉异或校验和

语句示例:

\$GPLOG, 061941. 20, (L1, L5, G1, E1, E5a, B1, B2a, L1, L5,), (8, 5, 5, 6, 8, 12, 7, 3, 3,), (6, 4, 0, 3, 5, 11, 7, 2, 2,), (40, 47, 40, 39, 43, 41, 47, 40, 48,)*28

(3) GPCAL

\$GPCAL, <1>, <2>, <3>, <4>, <5>, <6>*<7><CR><LF>

- <1> X 轴臂杆参数
- <2> Y 轴臂杆参数
- <3> Z 轴臂杆参数
- 〈4〉安装参数1
- 〈5〉 安装参数 2
- 〈6〉标定进度百分比,60%以前进行臂杆标定,60%以后进行安装参数标定.
- <7> 异或校验和

语句示例:

\$GNCAL, -1. 220, 0. 004, 0. 345, 0. 000, 0. 000, 90*4A

说明:数据协议中 GPIMU, GPATT, GPCAL 仅支持 P20E-INS

4. 差分数据协议

P20 模组可支持接收外部基站数据进行 RTK 差分解算和自身作为基站输出 RTCM3 数据两个功能。其中接收外部差分支持 RTCM3. 2 及以上版本的数据(msm4-msm7)。

P20 模组基站功能输出 RTCM3.3 协议支持的消息类型有:

RTCM 消息类型	消息描述
1005	基站坐标
1074	GPS 观测量
1084	GLO 观测量
1094	GAL 观测量
1114	QZSS 观测量
1124	BDS 观测量

五. 常见问题解答

1. AT+COLD RESET 执行异常

问题描述:

发送 AT+COLD_RESET 后,模组无法自动重新启动(正常情况下,发送 COLD_RESET 指令后大概 10s 左右会串口有 GGA),需要外部断电重启才可以。

解决方案:

检查一下 49 号复位引脚是否有串连电阻 (10K),建议按照参考电路设计串连一个电阻。

因为在 cold reset 时,复位引脚会主动拉低,外部 IO 驱动能力过强,可能拉不下去。

2. 产品型号说明

P20E-INS 对比 P20E 增加了 IMU 惯性测量单元,上述文档中增加了对 IMU 相关的参数、命令及相关说明,P20E-INS 与 P20E 在其他参数、功能上完全一致。

3. 固件版本号说明

P20E 的完整版本号由 4 部分构成,BV、RTK、SOC、DRIVER,各部分之间由_连接,每个部分版本号主要由 主版本号和编译时间构成,通常情况下主版本号相对稳定,每次升级版本号主要更新编译时间

enc 升级包一般以 RTK 部分的编译时间命名。

每个部分都可以独立升级改变其版本(全量升级包和增量升级包)

比较新的固件新增了一条 Release Ver 打印提供简化版的版本号,主要由各部分编译时间组成

完整版本号示例: Version:B 2.8.8 May 30 2023 RTK v.1.5.2.p2De-18:08:43 May 30 2023_S0C FMI P20E V2.6.0 20230510 DRIVER 202206151