

菲曼产品手册

P20L 全系统高精度双频 RTK 模组

V1. 0. 8

修订记录

版本	修订记录	修订日期
V1. 0. 0	Beta 版	2022-03-18
V1. 0. 1	添加 UART1 和对应的配置命令	2022-04-15
V1. 0. 2	支持低功耗、待机模式	2022-04-28
V1. 0. 3	修改待机模式指令参数说明	2022-05-05
V1. 0. 4	修改模组功耗,更新电路图	2022-05-23
V1. 0. 5	添加尺寸封装	2022-08-05
V1. 0. 6	更新 SMT 贴片工艺	2022-12-07
V1. 0. 7	新增部分指令、修改部分参数	2023-04-17
V1. 0. 8	新增模组图片,新增速度精度参数	2023-05-23
V1. 0. 9	增加快速冷启动、热启动说明	2023-07-13

目录

1. 产品简介4
2. 产品特性4
3. 产品指标5
4. 引脚分布6
5. 电路图7
6. 天线特性7
7. 配置命令8
8. 待机模式说明9
9. 热启动说明10
10. 快速冷启动说明10
11. 尺寸封装11
12

1. 产品简介

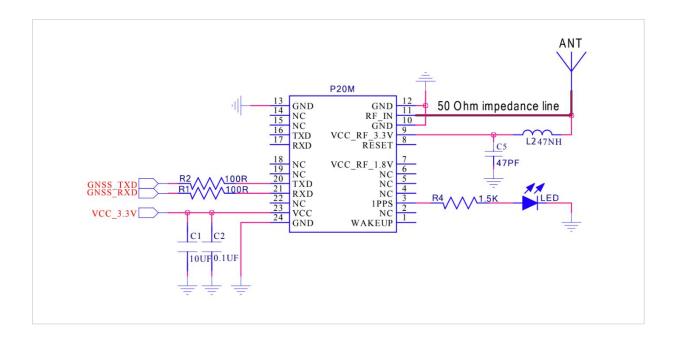
P20L 是一款高性能 GNSS RTK 模组,专为需要厘米级精度的应用设计。支持 BDS、GPS、GALILEO、GLONASS、QZSS,在亚太地区可见卫星高达 50 颗以上,保证在各种环境条件下可靠且持续的定位。

2. 产品特性

- 全系统双频 RTK 定位方案, 定位精度可达到 1cm+1ppm
- 支持 BDS、GPS、GALILEO、GLONASS、QZSS
- •尺寸小, IO 兼容性好
- 支持低功耗

3. 产品指标

类别	性能指标	性能指标			
	GPS/QZSS: L1/L5	GPS/QZSS: L1/L5			
明吟城占	BeiDou : B1I/B2a				
跟踪频点 	GALILEO: E1/E5a				
	GLONASS: G1	GLONASS: G1			
数据更新频率	1Hz	1Hz			
	跟踪	-165dBm			
灵敏度	重捕获	-160dBm			
	捕获灵敏度	-148dBm			
* \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	冷启动	≤27s			
首次定位用时	热启动	2s			
固定解收敛时间	≤ 10s(开阔天空下短基线	k或 VRS)			
水平精度	1cm + 1ppm	1cm + 1ppm			
高程精度	2cm + 1ppm	2cm + 1ppm			
速度精度	5cm/s	5cm/s			
应用极限	速度	515m/s			
	高度	18km			
接口	UART	2 (默认波特率 115200)			
按口 	PPS	1			
数据格式	NMEA 0183	NMEA 0183			
奴1/6 行入	RTCM 3.3				
	主电源电压	2.8V~4.3V(推荐 3.3V)			
	天线电压	3.3V(与主电源电压一致)			
工作情况	低功耗天线供电电压	1. 8V			
	串口电压	2. 8V			
	PPS	2. 8V			
功耗	12mA*3.3V	12mA*3.3V			
工作环境	-40°C to 85°C	-40℃ to 85℃			
存放温度	-40℃ to 90℃	-40℃ to 90℃			
封装尺寸	16mm*12.2mm*2.4mm				


4. 引脚分布

13	GND GND	12		
14	NC RF_IN	11		
15	RTK_STAT GND	10		
16	UART1_TXD VCC_RF 3.3	9		
17	UART1_RXD RESET 1.8	8		
P20L				
18	NC VCC_RF 1.8	7		
19	NC NC	6		
20	UARTO_TXD NC	5		
21	UARTO_RXD NC	4		
22	NC 1PPS	3		
23	VCC NC	2		
24	GND WAKE_UP 1.8	1		

名称	I/0	描述
WAKE_UP	Ι	从待机模式唤醒(1.8V)
1PPS	0	时间脉冲
VCC_RF 1.8V	0	低功耗射频天线供电 1.8V
RESET	I	重置(1.8V)
VCC_RF 3.3V	0	射频天线供电 3.3V
GND	I	接地
RF_IN	I	天线信号输入
RTK_STAT	0	高电平->固定解,低电平->非固定解
UART1_TXD	0	NMEA-0183, 基站模式 RTCM3 差分输出
UART1_RXD	I	差分数据,AT 命令,FOTA 升级
UARTO_TXD	0	主串口(功能同 UART1_TXD)
UARTO_RXD	I	差分数据, AT 命令, FOTA 升级
VCC	I	主电源
	WAKE_UP 1PPS VCC_RF 1.8V RESET VCC_RF 3.3V GND RF_IN RTK_STAT UART1_TXD UART1_TXD UART0_TXD	WAKE_UP I 1PPS 0 VCC_RF 1. 8V 0 RESET I VCC_RF 3. 3V 0 GND I RF_IN I RTK_STAT 0 UART1_TXD 0 UART1_RXD I UART0_TXD 0 UART0_RXD I

5. 电路图

参考电路 V2.0

6. 天线特性

参数	最小值	最大值	单位
输入增益	18	25	dB

7. 配置命令

AT+GPGGA=UARTO/1, n	设置对应的串口每 n 个历元输出一次 GGA			
AT+GPRMC=UARTO/1, n	设置对应的串口每 n 个历元输出一次 RMC			
AT+GPSAT=UARTO/1, n	设置对应的串口每 n 个历元输出一次 GSA 和 GSV			
AT+GPGST=UARTO/1, n	设置对应的串口每 n 个历元输出一次 GST			
AT+GPGLL=UARTO/1, n	设置对应的串口每 n 个历元输出一次 GLL			
AT+GPVTG=UARTO/1, n	设置对应的串口每 n 个历元输出一次 VTG			
AT+GPZDA=UARTO/1, n	设置对应的串口每 n 个历元输出一次 ZDA			
AT+RTCM=UARTO/1, 1/0	输出/关闭 RTCM3 观测量 (基站模式) 1:输出、0:关闭			
AT+WARM_RESET	温启动			
AT+COLD_RESET	冷启动(部分命令需要冷启动后生效)			
AT+UARTOFF=UARTO/1	关闭指定串口所有输出			
AT+BAUD_RATE=UARTO/1, 115200	设置串口波特率,断电重启后生效			
AT+READ_PARA	读取模组配置参数			
AT+THIS_PORT	获取当前对应的串口号			
AT+BASE_LLH=lat, lon, alt	基站模式下设置基站坐标,断电重启后生效			
AT+AUTO_BASE=ENABLE	设置模块自动收敛基站坐标,断电重启后生效			
AT+RTC_MODE=n	进入待机模式, n 为保持 RTC 休眠模式的时间(秒), 最小有效时间为 10 秒,设置为 0,则需要硬件唤醒			
AT+BDS_ONLY=1/0	打开/关闭单北斗模式,设置完需要发送 AT+COLD_RESET 或者断电重启生效(需最新版本支持)			

备注: 升级到最新版本后,如果配置当前通信串口在输入命令时可以省略 UARTO/1

示例:

1. 串口 0 输出 GGA

AT+GPGGA=UARTO, 1

2. 串口 0 关闭 GGA

AT+GPGGA=UARTO, 0

特别说明: 串口命令需以\r\n 结尾,可通过2路串口互相配置,并支持旧版本的命令

使用基站模式示例说明:

以当前串口为 UARTO 为例: (若为 UART1 则将当前的串口号变更为 UART1 即可)

1. 关闭 UARTO 串口所有输出:

AT+UARTOFF=UARTO

2. 输出 RTCM 数据(基站模式)

AT+RTCM=UARTO, 1

3. 设置基站位置:

AT+BASE LLH=30.0641460, 106.2280561, 21.15

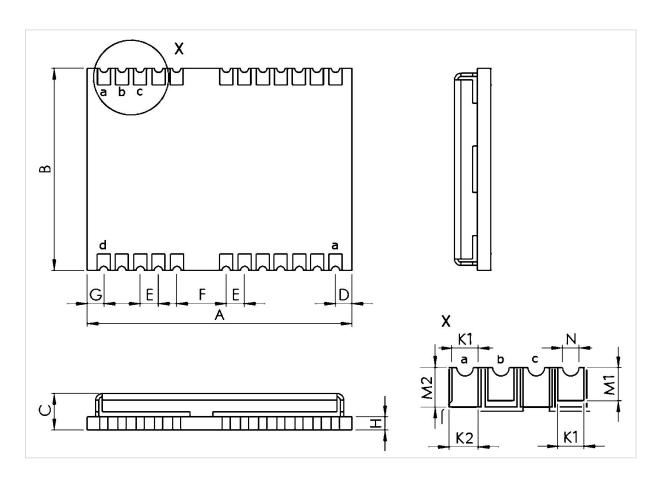
基站模式下手动设置基站坐标,对应单位为纬度(°),经度(°),高程(m)。

如果纬度经度高程都设置为 0(缺省模式)或发送 AT+AUTO_BASE=ENABLE,则使用模组内部估算的位置作为基站坐标,发送 AT+COLD_RESET 或断电重启后生效,在模组收星良好的情况下大概需要 20-30 秒,每次模组上电都会重新估计基站坐标。

8. 待机模式说明

- 1. 进入待机模式:发送 AT+RTC MODE=n 后系统可以进入待机模式
- 2. 退出待机模式: WAKE_UP(1号)引脚拉高 10ms 后,模组会自动退出待机模式

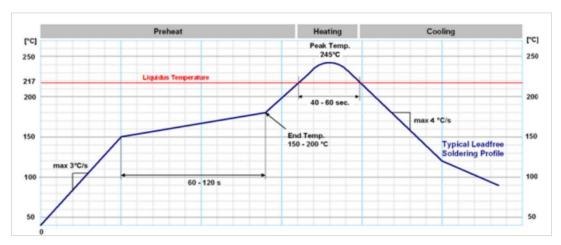
9. 热启动说明


- 1. 通过待机模式可以实现 P20M 热启动,发送 AT+RTC_MODE=n 后系统可以进入待机模式
- 2. 进入待机模式以后,不能给模组掉电,这个时候模组依然需要供电,此时工作电流 仅为50uA(耗电量极低),模组暂停数据输出,在一号管脚拉高10ms以后,从低 功耗退出,模组可恢复数据输出正常搜星3秒内定位

10. 快速冷启动说明

- 1. 通过另一台 P20M 做基站,向移动站发送星历数据,当设备启动会第一时间读取接收到的星历数据来实现快速启动,可在 5 秒内快速启动进入定位(需新版固件支持)
- 2. 实现方式: ①配置差分数据输出: AT+RTCM=1
 - ②配置输出星历、UTC时间和位置信息: AT+AUTO EPH=1
 - ③配置基站坐标(可选项): AT+BASE_LLH=lat,lon,height 例: AT+BASE LLH=30.0641460, 106.2280561, 21.15
 - ④移动站接收此基站发送的差分服务即可实现快速冷启动
- 3. 本地验证(测试)方式:
 - ①使用 Trident 工具将 P20M 升级到最新的固件
 - ②升级完成后接上天线并连接 Trident 工具,在开阔环境下等待进入 单点解,卫星数量大于 20 颗后,发送\$GET_EPH 命令获取星历数据,并将工具同级目录下/nmea/中当前生成的文件重新命名为 eph.nmea
 - ③测试冷启动时间:打开串口,上下电或发送 AT+COLD_RESET 给 模组进行重启。 启动成功后,发送\$SET_EPH,此时开始记录输出单点定位所需要的时间(<5 秒)

11. 尺寸封装



标识	描述	Min (mm)	Typ. (mm)	Max (mm)
A	长	15. 9	16.0	16.6
В	宽	12. 1	12. 2	12. 3
С	模组总厚度	2. 2	2. 4	2.6
D, G	水平边缘到引脚间距	0. 9	1.0	1.3
Е	引脚间距	1.0	1. 1	1.2
F	间隙宽度	2. 9	3.0	3. 1
Н	PCB 厚度		0.82	
K1	焊盘宽度 (金属)	0.7	0.8	0.9
K2	焊盘宽度(金属/焊料)	0.7	0.8/0.9	0.9/1.2
M1	焊盘高度 (金属)	0.7	0.8	0.9
M2	焊盘高度(金属/焊料)	0.7	0.9	1.1
N	焊盘半月直径	0. 4	0. 5	0.6

12. 生产要求

1. 炉温示意图

2. 预热阶段

升温速率: max 3° C/S。如果温升过快,可能导致锡膏较大坍塌。

预热时间: 60¹²⁰S。预热不足会产生较大的焊锡球,相反,预热过长,焊锡球将会聚集产生。

终止温度: 150° C~200° C。温度过低,一些热熔量较大的区域将不会融化。

3. 加热-回流焊阶段

液态温度 217°C以上。避免温度突然升高,引起物料塌陷。

超过 217°C 的时间: 40-60S。

峰值温度: 245°C。

4. 冷却阶段:

冷却控制主要避免焊料变得更脆和焊料可能的机械张力

降温速率: max 4° C/S。